This is a comprehensive refactoring that transforms the dictation service from a complex multi-mode application into two clean, focused features: 1. Voice dictation with system tray icon 2. On-demand read-aloud via Ctrl+middle-click ## Key Changes ### Dictation Service Enhancements - Add GTK/AppIndicator3 system tray icon for visual status - Remove all notification spam (dictation start/stop/status) - Icon states: microphone-muted (OFF) → microphone-high (ON) - Click tray icon to toggle dictation (same as Alt+D) - Simplify ai_dictation_simple.py by removing conversation mode ### Read-Aloud Service Redesign - Replace automatic clipboard reader with on-demand Ctrl+middle-click - New middle_click_reader.py service - Works anywhere: highlight text, Ctrl+middle-click to read - Uses Edge-TTS (Christopher voice) with mpv playback - Lock file prevents feedback with dictation service ### Conversation Mode Removed - Delete all VLLM/conversation code (VLLMClient, ConversationManager, TTS) - Archive 5 old implementations to archive/old_implementations/ - Remove conversation-related scripts and services - Clean separation of concerns for future reintegration if needed ### Dependencies Cleanup - Remove: openai, aiohttp, pyttsx3, requests (conversation deps) - Keep: PyGObject, pynput, sounddevice, vosk, numpy, edge-tts - Net reduction: 4 packages removed, 6 core packages retained ### Testing Improvements - Add test_dictation_service.py (8 tests) ✅ - Add test_middle_click.py (11 tests) ✅ - Fix test_run.py to use correct model path - Total: 19 unit tests passing - Delete obsolete test files (test_suite, test_vllm_integration, etc.) ### Documentation - Add CHANGES.md with complete changelog - Add docs/MIGRATION_GUIDE.md for upgrading - Add README.md with quick start guide - Update docs/README.md with current features only - Add justfile for common tasks ### New Services & Scripts - Add middle-click-reader.service (systemd) - Add scripts/setup-middle-click-reader.sh - Add desktop files for autostart - Remove toggle-conversation.sh (obsolete) ## Impact **Code Quality** - Net change: -6,007 lines (596 added, 6,603 deleted) - Simpler architecture, easier maintenance - Better test coverage (19 tests vs mixed before) - Cleaner separation of concerns **User Experience** - No notification spam during dictation - Clean visual status via tray icon - Full control over read-aloud (no unwanted readings) - Better performance (fewer background processes) **Privacy** - No conversation data stored - No VLLM connection needed - All processing local except Edge-TTS text ## Migration Notes Users upgrading should: 1. Run `uv sync` to update dependencies 2. Restart dictation.service to get tray icon 3. Run scripts/setup-middle-click-reader.sh for new read-aloud 4. Remove old read-aloud.service if present See docs/MIGRATION_GUIDE.md for details. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
217 lines
7.1 KiB
Python
217 lines
7.1 KiB
Python
#!/mnt/storage/Development/dictation-service/.venv/bin/python
|
|
import os
|
|
import sys
|
|
import queue
|
|
import json
|
|
import time
|
|
import subprocess
|
|
import threading
|
|
import sounddevice as sd
|
|
from vosk import Model, KaldiRecognizer
|
|
from pynput.keyboard import Controller
|
|
import logging
|
|
|
|
# Setup logging
|
|
logging.basicConfig(filename='/home/universal/.gemini/tmp/428d098e581799ff7817b2001dd545f7b891975897338dd78498cc16582e004f/debug.log', level=logging.DEBUG)
|
|
|
|
# Configuration
|
|
MODEL_NAME = "vosk-model-en-us-0.22"
|
|
SAMPLE_RATE = 16000
|
|
BLOCK_SIZE = 8000
|
|
LOCK_FILE = "listening.lock"
|
|
|
|
# Global State
|
|
is_listening = False
|
|
keyboard = Controller()
|
|
q = queue.Queue()
|
|
last_partial_text = ""
|
|
typing_thread = None
|
|
should_type = False
|
|
|
|
def send_notification(title, message, duration=2000):
|
|
"""Sends a system notification"""
|
|
try:
|
|
subprocess.run(["notify-send", "-t", str(duration), "-u", "low", title, message],
|
|
capture_output=True, check=True)
|
|
except (FileNotFoundError, subprocess.CalledProcessError):
|
|
pass
|
|
|
|
def download_model_if_needed():
|
|
"""Download model if needed"""
|
|
if not os.path.exists(MODEL_NAME):
|
|
logging.info(f"Model '{MODEL_NAME}' not found. Downloading...")
|
|
try:
|
|
subprocess.check_call(["wget", f"https://alphacephei.com/vosk/models/{MODEL_NAME}.zip"])
|
|
subprocess.check_call(["unzip", f"{MODEL_NAME}.zip"])
|
|
logging.info("Download complete.")
|
|
except Exception as e:
|
|
logging.error(f"Error downloading model: {e}")
|
|
sys.exit(1)
|
|
|
|
def audio_callback(indata, frames, time, status):
|
|
"""Audio callback"""
|
|
if status:
|
|
logging.warning(status)
|
|
if is_listening:
|
|
q.put(bytes(indata))
|
|
|
|
def process_partial_text(text):
|
|
"""Process and display partial results with real-time feedback"""
|
|
global last_partial_text
|
|
|
|
if text and text != last_partial_text:
|
|
last_partial_text = text
|
|
logging.info(f"💭 {text}")
|
|
|
|
# Show brief notification for longer partial text
|
|
if len(text) > 3:
|
|
send_notification("🎤 Speaking", text[:50] + "..." if len(text) > 50 else text, 1000)
|
|
|
|
def process_final_text(text):
|
|
"""Process and type final results immediately"""
|
|
global last_partial_text, should_type
|
|
|
|
if not text.strip():
|
|
return
|
|
|
|
# Format and clean text
|
|
formatted = text.strip()
|
|
|
|
# Filter out spurious single words that are likely false positives
|
|
if len(formatted.split()) == 1 and formatted.lower() in ['the', 'a', 'an', 'uh', 'huh', 'um', 'hmm']:
|
|
logging.info(f"⏭️ Filtered out spurious word: {formatted}")
|
|
return
|
|
|
|
# Filter out very short results that are likely noise
|
|
if len(formatted) < 2:
|
|
logging.info(f"⏭️ Filtered out too short: {formatted}")
|
|
return
|
|
|
|
formatted = formatted[0].upper() + formatted[1:] if formatted else formatted
|
|
|
|
logging.info(f"✅ {formatted}")
|
|
|
|
# Show final result notification briefly
|
|
send_notification("✅ Said", formatted, 1500)
|
|
|
|
# Type the text immediately
|
|
try:
|
|
keyboard.type(formatted + " ")
|
|
logging.info(f"📝 Typed: {formatted}")
|
|
except Exception as e:
|
|
logging.error(f"Error typing: {e}")
|
|
|
|
# Clear partial text
|
|
last_partial_text = ""
|
|
|
|
def continuous_audio_processor():
|
|
"""Background thread for continuous audio processing"""
|
|
recognizer = None
|
|
|
|
while True:
|
|
if is_listening and recognizer is None:
|
|
# Initialize recognizer when we start listening
|
|
try:
|
|
model = Model(MODEL_NAME)
|
|
recognizer = KaldiRecognizer(model, SAMPLE_RATE)
|
|
logging.info("Audio processor initialized")
|
|
except Exception as e:
|
|
logging.error(f"Failed to initialize recognizer: {e}")
|
|
time.sleep(1)
|
|
continue
|
|
|
|
elif not is_listening and recognizer is not None:
|
|
# Clean up when we stop listening
|
|
recognizer = None
|
|
logging.info("Audio processor cleaned up")
|
|
time.sleep(0.1)
|
|
continue
|
|
|
|
if not is_listening:
|
|
time.sleep(0.1)
|
|
continue
|
|
|
|
# Process audio when listening
|
|
try:
|
|
data = q.get(timeout=0.1)
|
|
|
|
if recognizer:
|
|
# Process partial results (real-time streaming)
|
|
if recognizer.PartialResult():
|
|
partial = json.loads(recognizer.PartialResult())
|
|
partial_text = partial.get("partial", "")
|
|
if partial_text:
|
|
process_partial_text(partial_text)
|
|
|
|
# Process final results
|
|
if recognizer.AcceptWaveform(data):
|
|
result = json.loads(recognizer.Result())
|
|
final_text = result.get("text", "")
|
|
if final_text:
|
|
process_final_text(final_text)
|
|
|
|
except queue.Empty:
|
|
continue
|
|
except Exception as e:
|
|
logging.error(f"Audio processing error: {e}")
|
|
time.sleep(0.1)
|
|
|
|
def show_streaming_feedback():
|
|
"""Show visual feedback when dictation starts"""
|
|
# Initial notification
|
|
send_notification("🎤 Dictation Active", "Speak now - text will appear live!", 3000)
|
|
|
|
# Brief progress notifications
|
|
def progress_notification():
|
|
time.sleep(2)
|
|
if is_listening:
|
|
send_notification("🎤 Still Listening", "Continue speaking...", 2000)
|
|
|
|
threading.Thread(target=progress_notification, daemon=True).start()
|
|
|
|
def main():
|
|
try:
|
|
logging.info("Starting enhanced streaming dictation")
|
|
global is_listening
|
|
|
|
# Model Setup
|
|
download_model_if_needed()
|
|
logging.info("Model ready")
|
|
|
|
# Start audio processing thread
|
|
audio_thread = threading.Thread(target=continuous_audio_processor, daemon=True)
|
|
audio_thread.start()
|
|
logging.info("Audio processor thread started")
|
|
|
|
logging.info("=== Enhanced Dictation Ready ===")
|
|
logging.info("Features: Real-time streaming + instant typing + visual feedback")
|
|
|
|
# Open audio stream
|
|
with sd.RawInputStream(samplerate=SAMPLE_RATE, blocksize=BLOCK_SIZE, dtype='int16',
|
|
channels=1, callback=audio_callback):
|
|
logging.info("Audio stream opened")
|
|
|
|
while True:
|
|
# Check lock file for state changes
|
|
lock_exists = os.path.exists(LOCK_FILE)
|
|
|
|
if lock_exists and not is_listening:
|
|
is_listening = True
|
|
logging.info("[Dictation] STARTED - Enhanced streaming mode")
|
|
show_streaming_feedback()
|
|
|
|
elif not lock_exists and is_listening:
|
|
is_listening = False
|
|
logging.info("[Dictation] STOPPED")
|
|
send_notification("🛑 Dictation Stopped", "Press Alt+D to resume", 2000)
|
|
|
|
# Sleep to prevent busy waiting
|
|
time.sleep(0.05)
|
|
|
|
except KeyboardInterrupt:
|
|
logging.info("\nExiting...")
|
|
except Exception as e:
|
|
logging.error(f"Fatal error: {e}")
|
|
|
|
if __name__ == "__main__":
|
|
main() |