- Complete planning documentation for 5-phase development - UI design specifications and integration - Domain architecture and directory templates - Technical specifications and requirements - Knowledge incorporation strategies - Dana language reference and integration notes
334 lines
12 KiB
Markdown
334 lines
12 KiB
Markdown
# Backend Architecture Implementation Plan
|
|
|
|
This document provides detailed technical specifications for implementing the backend architecture of the Advanced Second Brain PKM System.
|
|
|
|
## Architecture Overview
|
|
|
|
The backend follows a modular, service-oriented architecture designed for scalability, maintainability, and clear separation of concerns.
|
|
|
|
```
|
|
┌─────────────────────────────────────────────────────────────┐
|
|
│ API Layer (FastAPI) │
|
|
│ ┌─────────────────────────────────────────────────────────┐ │
|
|
│ │ Service Layer │ │
|
|
│ │ ┌─────────────┬─────────────┬─────────────┬──────────┐ │ │
|
|
│ │ │ File System │ Dana │ Knowledge │ Embedding│ │ │
|
|
│ │ │ Service │ Runtime │ Graph │ Service │ │ │
|
|
│ │ └─────────────┴─────────────┴─────────────┴──────────┘ │ │
|
|
│ └─────────────────────────────────────────────────────────┘ │
|
|
│ ┌─────────────────────────────────────────────────────────┐ │
|
|
│ │ Data Access Layer │ │
|
|
│ │ ┌─────────────┬─────────────┬─────────────┬──────────┐ │ │
|
|
│ │ │ Neo4j │ Vector │ File │ Cache │ │ │
|
|
│ │ │ Graph DB │ Store │ System │ Layer │ │ │
|
|
│ │ └─────────────┴─────────────┴─────────────┴──────────┘ │ │
|
|
│ └─────────────────────────────────────────────────────────┘ │
|
|
└─────────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
## Core Components
|
|
|
|
### 1. API Layer (FastAPI)
|
|
|
|
#### Implementation Details
|
|
- **Framework**: FastAPI with Pydantic models
|
|
- **Version**: API v1 with semantic versioning
|
|
- **Documentation**: Auto-generated OpenAPI/Swagger docs
|
|
- **Authentication**: API key-based (future: JWT)
|
|
- **CORS**: Configured for frontend origins
|
|
- **Rate Limiting**: Basic implementation with Redis (future)
|
|
|
|
#### Key Endpoints
|
|
|
|
```
|
|
# File System Endpoints
|
|
GET /api/v1/domains/{domain_id}/files # List domain files
|
|
GET /api/v1/files/{file_id} # Get file metadata
|
|
GET /api/v1/files/{file_id}/content # Get file content
|
|
POST /api/v1/files/{file_id}/process # Trigger processing
|
|
|
|
# Agent Endpoints
|
|
GET /api/v1/domains/{domain_id}/agent # Get agent config
|
|
PUT /api/v1/domains/{domain_id}/agent # Update agent config
|
|
POST /api/v1/domains/{domain_id}/agent/execute # Execute agent
|
|
POST /api/v1/domains/{domain_id}/agent/test # Test agent code
|
|
|
|
# Knowledge Graph Endpoints
|
|
GET /api/v1/domains/{domain_id}/graph # Get graph data
|
|
POST /api/v1/domains/{domain_id}/graph/query # Query graph
|
|
PUT /api/v1/domains/{domain_id}/graph/nodes # Update nodes
|
|
PUT /api/v1/domains/{domain_id}/graph/edges # Update edges
|
|
|
|
# Search Endpoints
|
|
POST /api/v1/search/semantic # Semantic search
|
|
POST /api/v1/search/hybrid # Hybrid search
|
|
GET /api/v1/search/suggestions # Search suggestions
|
|
|
|
# Orchestrator Endpoints
|
|
POST /api/v1/orchestrator/query # Cross-domain query
|
|
GET /api/v1/orchestrator/status # Orchestrator status
|
|
POST /api/v1/orchestrator/agents # Get available agents
|
|
```
|
|
|
|
#### Error Handling
|
|
- Standardized error responses with error codes
|
|
- Detailed error logging with correlation IDs
|
|
- Graceful degradation for service failures
|
|
- Client-friendly error messages
|
|
|
|
### 2. Service Layer
|
|
|
|
#### File System Service
|
|
|
|
**Responsibilities:**
|
|
- Monitor domain directories for changes
|
|
- Handle file I/O operations securely
|
|
- Manage file metadata and indexing
|
|
- Coordinate document processing
|
|
|
|
**Key Classes:**
|
|
```python
|
|
class FileSystemService:
|
|
def __init__(self, config: FileSystemConfig)
|
|
def watch_directory(self, path: str) -> AsyncGenerator[FileEvent, None]
|
|
def get_file_metadata(self, file_path: str) -> FileMetadata
|
|
def read_file_content(self, file_path: str, offset: int = 0, limit: int = -1) -> bytes
|
|
def process_file(self, file_path: str) -> ProcessingResult
|
|
```
|
|
|
|
**Configuration:**
|
|
```python
|
|
@dataclass
|
|
class FileSystemConfig:
|
|
watch_paths: List[str]
|
|
excluded_patterns: List[str]
|
|
max_file_size: int = 100 * 1024 * 1024 # 100MB
|
|
processing_timeout: int = 300 # 5 minutes
|
|
concurrent_workers: int = 4
|
|
```
|
|
|
|
#### Dana Runtime Service
|
|
|
|
**Responsibilities:**
|
|
- Execute Dana code in sandboxed environment
|
|
- Manage agent lifecycle
|
|
- Handle Dana REPL interactions
|
|
- Provide debugging and error reporting
|
|
|
|
**Key Classes:**
|
|
```python
|
|
class DanaRuntimeService:
|
|
def __init__(self, config: DanaConfig)
|
|
def execute_code(self, code: str, context: Dict[str, Any]) -> ExecutionResult
|
|
def start_repl_session(self, agent_id: str) -> ReplSession
|
|
def validate_code(self, code: str) -> ValidationResult
|
|
def get_agent_status(self, agent_id: str) -> AgentStatus
|
|
```
|
|
|
|
**Sandboxing Strategy:**
|
|
- Restricted execution environment
|
|
- Limited standard library access
|
|
- Resource usage monitoring
|
|
- Timeout enforcement
|
|
- Error isolation
|
|
|
|
#### Knowledge Graph Service
|
|
|
|
**Responsibilities:**
|
|
- Manage graph database operations
|
|
- Handle node/edge CRUD operations
|
|
- Execute graph queries and traversals
|
|
- Provide graph analytics and visualization data
|
|
|
|
**Key Classes:**
|
|
```python
|
|
class KnowledgeGraphService:
|
|
def __init__(self, config: GraphConfig)
|
|
def create_node(self, node_data: NodeData) -> NodeId
|
|
def create_edge(self, edge_data: EdgeData) -> EdgeId
|
|
def query_graph(self, query: GraphQuery) -> QueryResult
|
|
def get_subgraph(self, center_node: NodeId, depth: int) -> GraphData
|
|
def calculate_centrality(self, method: str) -> CentralityResult
|
|
```
|
|
|
|
**Graph Schema:**
|
|
```cypher
|
|
// Node Types
|
|
(domain:Domain {id: string, name: string, path: string})
|
|
(document:Document {id: string, title: string, type: string})
|
|
(chunk:TextChunk {id: string, content: string, embeddings: list})
|
|
(concept:Concept {id: string, name: string, strength: float})
|
|
(agent:Agent {id: string, domain_id: string, dana_code: string})
|
|
|
|
// Edge Types
|
|
(:domain)-[:CONTAINS]->(:document)
|
|
(:document)-[:HAS_CHUNK]->(:chunk)
|
|
(:chunk)-[:CONTAINS_CONCEPT]->(:concept)
|
|
(:domain)-[:HAS_AGENT]->(:agent)
|
|
(:concept)-[:RELATED_TO {weight: float}]->(:concept)
|
|
```
|
|
|
|
#### Embedding Service
|
|
|
|
**Responsibilities:**
|
|
- Generate text embeddings for semantic search
|
|
- Manage vector storage and indexing
|
|
- Perform similarity searches
|
|
- Handle batch processing and caching
|
|
|
|
**Key Classes:**
|
|
```python
|
|
class EmbeddingService:
|
|
def __init__(self, config: EmbeddingConfig)
|
|
def generate_embeddings(self, texts: List[str]) -> List[List[float]]
|
|
def search_similar(self, query_embedding: List[float], top_k: int) -> SearchResults
|
|
def batch_process_chunks(self, chunks: List[DocumentChunk]) -> ProcessingStats
|
|
def update_index(self, new_embeddings: List[Tuple[str, List[float]]]) -> None
|
|
```
|
|
|
|
**Embedding Pipeline:**
|
|
1. Text preprocessing and chunking
|
|
2. Batch embedding generation
|
|
3. Vector normalization
|
|
4. Index updates with FAISS
|
|
5. Metadata storage in graph database
|
|
|
|
### 3. Data Access Layer
|
|
|
|
#### Database Abstraction
|
|
- Repository pattern for data access
|
|
- Connection pooling and retry logic
|
|
- Migration management
|
|
- Backup and recovery procedures
|
|
|
|
#### Caching Strategy
|
|
- Redis for session and API caching
|
|
- In-memory LRU cache for frequent queries
|
|
- CDN integration for static assets (future)
|
|
|
|
## Implementation Phases
|
|
|
|
### Phase 1A: Core Infrastructure (Week 1)
|
|
1. Set up FastAPI application structure
|
|
2. Implement basic configuration management
|
|
3. Create database connection layer
|
|
4. Set up logging and monitoring
|
|
5. Implement health check endpoints
|
|
|
|
### Phase 1B: File System Integration (Week 2)
|
|
1. Implement file system watcher
|
|
2. Create file metadata extraction
|
|
3. Set up document processing pipeline
|
|
4. Implement secure file I/O operations
|
|
5. Add file change event handling
|
|
|
|
### Phase 1C: Dana Runtime (Week 3)
|
|
1. Integrate Dana language runtime
|
|
2. Implement sandboxed execution
|
|
3. Create agent lifecycle management
|
|
4. Set up REPL functionality
|
|
5. Add error handling and debugging
|
|
|
|
### Phase 1D: Knowledge Graph (Week 4)
|
|
1. Set up Neo4j connection and schema
|
|
2. Implement basic CRUD operations
|
|
3. Create graph query interface
|
|
4. Add centrality calculations
|
|
5. Implement graph visualization data endpoints
|
|
|
|
## Performance Considerations
|
|
|
|
### Scalability
|
|
- Horizontal scaling with load balancer
|
|
- Database read replicas for queries
|
|
- CDN for static content delivery
|
|
- Background job queues for heavy processing
|
|
|
|
### Optimization Strategies
|
|
- Connection pooling for databases
|
|
- Embedding batching and caching
|
|
- Graph query optimization
|
|
- File system operation parallelization
|
|
|
|
### Monitoring and Observability
|
|
- Structured logging with correlation IDs
|
|
- Performance metrics collection
|
|
- Health checks for all services
|
|
- Error tracking and alerting
|
|
|
|
## Security Implementation
|
|
|
|
### Data Protection
|
|
- Local data sovereignty enforcement
|
|
- File system permission validation
|
|
- Secure temporary file handling
|
|
- Input sanitization and validation
|
|
|
|
### API Security
|
|
- Rate limiting implementation
|
|
- Request validation with Pydantic
|
|
- CORS configuration
|
|
- API key authentication
|
|
|
|
### Runtime Security
|
|
- Dana code sandboxing
|
|
- Resource usage limits
|
|
- Execution timeouts
|
|
- Error isolation
|
|
|
|
## Testing Strategy
|
|
|
|
### Unit Testing
|
|
- Service layer testing with mocks
|
|
- Data access layer testing
|
|
- API endpoint testing
|
|
- Error condition testing
|
|
|
|
### Integration Testing
|
|
- End-to-end API workflows
|
|
- Database integration tests
|
|
- File system operation tests
|
|
- Cross-service communication tests
|
|
|
|
### Performance Testing
|
|
- Load testing for API endpoints
|
|
- Database query performance tests
|
|
- File processing throughput tests
|
|
- Memory usage profiling
|
|
|
|
## Deployment Architecture
|
|
|
|
### Development Environment
|
|
- Local Docker Compose setup
|
|
- Hot reload for development
|
|
- Debug logging enabled
|
|
- Local database instances
|
|
|
|
### Production Environment
|
|
- Containerized deployment
|
|
- Orchestration with Kubernetes
|
|
- Production database configuration
|
|
- Monitoring and alerting setup
|
|
|
|
### CI/CD Pipeline
|
|
- Automated testing on commits
|
|
- Docker image building
|
|
- Security scanning
|
|
- Deployment automation
|
|
|
|
## Migration and Rollback
|
|
|
|
### Data Migration
|
|
- Versioned database migrations
|
|
- Backward compatibility for APIs
|
|
- Data export/import capabilities
|
|
- Rollback procedures for deployments
|
|
|
|
### Service Updates
|
|
- Blue-green deployment strategy
|
|
- Feature flags for gradual rollouts
|
|
- Monitoring during deployments
|
|
- Automated rollback triggers
|
|
|
|
This architecture provides a solid foundation for the Advanced Second Brain PKM System, ensuring scalability, maintainability, and security while supporting the complex requirements of multi-agent knowledge management.</content>
|
|
<parameter name="filePath">docs/plans/technical-implementation/backend-architecture.md |